The transition to renewable energy is an essential part of the fight against climate change. But it will only address 55 percent of global greenhouse gas emissions. To achieve net-zero emissions by 2050, to meet the target set in the Paris Agreement, the remaining 45 percent of emissions from industry, agriculture and land-use need to be addressed as well. The materials industry, which comprises companies that manufacture raw materials such as steel, aluminum, cement and chemicals, is responsible for a large share of these remaining emissions and therefore has a key role to play.
Globally, the production of cement accounts for 8 percent of CO2 emissions, in the case of ammonia each tonne produced emits 2.6 tonnes of CO2, and for steel the ratio is 1:2. Overall, the materials industry is responsible for 27 percent of global CO2 emissions (including energy-related emissions). To reduce these emissions, the materials industry faces a limited number of options which may involve the use of low-carbon energy (energy generated using lower amounts of carbon emissions such as wind, solar or nuclear power): low-carbon production processes, carbon capture or material recycling. However, most of these solutions are neither effective nor available at scale.
In some parts of the industry, the use of low-carbon energy can only have a limited impact as most emissions come from chemical reactions (so-called “process emissions”) rather than the energy consumption during the production process. For instance, about two-thirds of the emissions of cement production result from calcination, the chemical reaction that occurs when limestone is exposed to high temperatures. Read more…